Abstract
Vortices in quantum condensates exist owing to a macroscopic phase coherence. Here we show, both experimentally and theoretically, that a quantum vortex with a welldefined core can exist in a rather thick normal metal, proximized with a superconductor. Using scanning tunneling spectroscopy we reveal a proximity vortex lattice at the surface of 50 nm—thick Culayer deposited on Nb. We demonstrate that these vortices have regular round cores in the centers of which the proximity minigap vanishes. The cores are found to be significantly larger than the Abrikosov vortex cores in Nb, which is related to the effective coherence length in the proximity region. We develop a theoretical approach that provides a fully selfconsistent picture of the evolution of the vortex with the distance from Cu/Nb interface, the interface impedance, applied magnetic field, and temperature. Our work opens a way for the accurate tuning of the superconducting properties of quantum hybrids.
Introduction
The proximity effect occurs at interfaces between superconducting (S) and normal (N) metals. It is due to the penetration of superconducting correlations into the N material and of nonsuperconducting quasiparticles into the superconductor^{1,2,3}. As a result, the Nlayer acquires a relatively longrange quantum coherence from the superconductor, while on the S side the superconducting order parameter is partially suppressed. Owing its quantum coherent nature, the proximity effect is a key ingredient for operation of various superconducting quantum coherent devices, ranging from simple Josephson junctions to quantum computers^{4,5,6,7,8,9,10,11,12}.
In the vicinity of the S/N interface the proximity effect leads to specific spectral features in the quasiparticle excitation spectrum^{13,14,15}. In the diffusive regime and at a finite thickness d_{N} of the Nlayer, the induced coherent state in Nlayer is characterized by an energy gap δ, commonly referred to as minigap, which is of the order of the Thouless energy \(\sim \hbar D_{\mathrm{N}}{\mathrm{/}}d_{\mathrm{S}}^2\), smaller than the bulk superconducting gap Δ in S^{16,17,18,19,20,21} (see also Methods, subsection Proximity phenomena in the diffusive limit).
Local spectral signatures of the proximity effect were studied in numerous theoretical and experimental works, though, on a microscopic scale, the coherent character of the proximity phenomena was revealed only recently^{20,22}. In these works lateral proximity junctions were built, specific phase portraits were produced by applying an external magnetic field, and the quantum coherence was demonstrated through its effect on local spectral signatures in one (1D)^{20} and two dimensions (2D)^{22}.
A more general yet complex is the 3D case of a superconducting vortex crossing a S/N interface. From a fundamental point of view, the interest to this problem is related to the special feature of the proximityinduced state, namely that the pair potential Δ vanishes on the N side of the S/N bilayer, while the minigap δ persists. Therefore, an important question is how the superconducting vortex structure is reproduced in the normal metal. Previous studies^{23,24,25,26} were restricted to the limit of very small N layer thickness, at which the proximity vortex essentially mimics the superconducting one. How does the vortex evolve in a thick Nlayer? Do these vortices have cores, like Abrikosov vortex in superconductors? What does fix the core size? Both experimental and theoretical understandings of the problem are missing.
In this paper we study the spatial evolution of quantum vortices induced into a diffusive 50 nm thick metallic Cufilm by proximity with a superconducting 100 nm thick Nb layer. The geometry of the experiment is presented in Fig. 1a (see also Methods, subsections Sample preparation and characterization and scanning tunneling spectroscopy experiments). At zero magnetic field a spatially homogeneous proximity minigap is revealed at the surface of Cufilm by scanning tunneling spectroscopy (STS), Fig. 1b. By applying a magnetic field perpendicular to Cu/Nb interface we created Abrikosov vortices in Nb and measured their effect on the tunneling Local Density of States (tunneling LDOS) at Cusurface. STS maps revealed a disordered lattice of proximity vortices, with a proximity minigap vanishing inside the vortex cores (Fig. 1c, d). Since quantum vortices are direct consequence of the 2πsingularity of the macroscopic phase, our STS experiments directly demonstrate that in the diffusive normal Cu the quantum coherence is preserved several tens of nanometers away from the S/N interface. To extend our knowledge about the proximity vortices inside Nelectrode we developed a selfconsistent theoretical model based on quasi3D Usadel formalism^{27}. A combination of this theory with the results of the surfacesensitive STS experiment offers a complete microscopic picture of the spatial and spectral evolution of the proximity vortex cores in a diffusive metal. Among possible candidates for S/N bilayers we chose Nb/Cu, a system commonly used for SNS junctions^{10,28,29,30,31,32}.
Results
Experiment
Despite the expected granular structure of sputtered Cufilms^{33} (see also Supplementary Fig. 3a), the tunneling spectra acquired at zero magnetic field are spatially homogeneous; at 300 mK they have a typical shape of a proximity LDOS. The spectra are characterized by broad quasiparticle peaks and a welldeveloped proximity minigap δ_{Cu} ≃ 0.5 meV, which is significantly smaller than the superconducting gap of the underlying Nb, Δ_{Nb} = 1.4 meV (Fig. 1b). When the temperature increases, the minigap rapidly vanishes; at T = 4–4.5 K it is not observed anymore (the temperature dependence of the tunneling spectra is available in Supplementary Fig. 2c, e).
In contrast, when a magnetic field is applied, the zerobias conductance (ZBC) maps dI/dV(V = 0) show spatially inhomogeneous distribution of ZBC, forming regular round spots, Fig. 2. As the external magnetic field H is increased from 5 to 55 mT, and then to 120 mT, the density of the spots raises in an expected ∝H manner (Figs. 1c and 2a, c). In the centers of the spots the minigap vanishes, and a normal state LDOS is recovered (Fig. 2b, d). The spots can therefore be unambiguously interpreted as cores of quantum vortex generated in Nb, crossing the entire Cufilm, and emerging at the surface. The ZBC profiles of these vortices (Fig. 1c) are similar to those of Abrikosov vortex cores in superconductors^{24,34,35,36,37,38}. However, they are by a factor of 4 larger than the expected vortex core profile in the underlying superconducting Nb. The understanding of this effect is not trivial, and requires additional theoretical considerations that we present below.
Theory and numerical method
We performed our theoretical calculations in the framework of the quasiclassical Usadel formalism^{27}. The advantage of this approach is that in the diffusive limit, l ≪ ξ (where l and ξ are respectively the mean free path and the coherence length), it enables accurate calculations of the spatial and energy variations of the quasiparticle excitation spectra in superconducting hybrids (Usadel fits of experimental tunneling conductance spectra acquired in zerofield are available in Supplementary Fig. 2d, f).
The drawback of the Usadel approach resides in a technical complexity of solving differential Usadel equations selfconsistently in spatially inhomogeneous 3Dsystems, with properly including the selfconsistency and taking into account various boundary conditions. These are nevertheless required to describe realistic superconducting hybrids under magnetic filed. This complexity explains why the Usadel model has mainly been used to solve 1D or quasi1D problems, rare exceptions being the original works by Cuevas and Bergeret^{39,40} who solved Usadel equations in 2D and predicted the existence of quantum vortices in the proximity area of diffusive SNS junctions, and a recent report by Amundsen and Linder^{41}. In the present work we took advantage of a quasicylindrical geometry of the vortex core and replaced the hexagonal vortex lattice unit cell by a circular one. This socalled Wigner–Seitz approximation^{42} is reasonable at low fields when the size of the vortex lattice unit cell is significantly larger than the lateral size of the vortex core. Notice, that the Wigner–Seitz approximation we use here to define the coordinate dependence of the Green’s function has been previously successfully used to study the Abrikosov vortex lattice and the influence of trapped Abrikosov vortices on properties of tunnel Josephson junctions^{16,43}.
We a priori assumed that the conditions of the dirty limit are valid for both S and N films, whose thicknesses are defined respectively as d_{S} and d_{N}. The pair potential, Δ is considered zero in N. We aligned the zaxis with \(\vec H\), and placed the origin at the interface between S and N metals. The S and N layers are therefore located at −d_{S} ≤ z ≤ 0 and 0 ≤ z ≤ d_{N}, respectively (Fig. 3a–c). According to the Wigner–Seitz approach the hexagonal unit cell of the vortex lattice is replaced by a circular one with a radius R_{S} = \(R_{\mathrm{c}}\sqrt {H_{{\mathrm{c2}}}{\mathrm{/}}H}\), where the critical radius R_{c} = \(\sqrt {{ {\Phi }}_{\mathrm{0}}{\mathrm{/}}\pi H_{{\mathrm{c2}}}}\) (Φ_{0} is the magnetic flux quantum) and the second critical field H_{c2} are determined by the wellknown expressions^{42}:
In Eq. (1) ψ(x) is the digamma function, t = T/T_{c}—reduced temperature, r_{c} = R_{c}/ξ_{S} is the reduced critical radius, ξ_{S} = \(\sqrt {\hbar D_{\mathrm{S}}{\mathrm{/}}2\pi k_{\mathrm{B}}T_{\mathrm{c}}}\), is the effective superconducting coherence length (An often used formula \(\xi _{\mathrm{S}} = \sqrt {D_{\mathrm{S}}{ {/\Delta }}}\) differs from our definition only by a numerical factor \(\sqrt {2\pi {\mathrm{/1}}{\mathrm{.76}}} \simeq 1.89\)), and D_{S} is the diffusion coefficient in S.
Under the above assumptions, the system of Usadel equations^{27} describing the behavior of S/N bilayer in a magnetic field in cylindrical (r, z) coordinates has the form^{16,43}:
Here θ_{S(N)} are complex pairing angles related to the local DOS in S(N) as N_{S(N)}(r, z, ε) = Re{cosθ_{S(N)}}, Ω = (2n + 1)t are the Matsubara frequencies, ξ_{N} = \(\sqrt {\hbar D_{\mathrm{N}}{\mathrm{/}}2\pi k_{\mathrm{B}}T_{\mathrm{c}}}\), D_{N} is the diffusion coefficient in N, k = ξ_{N}/ξ_{S}, Q is the circular component of the vector potential Q = (0, Q, 0) normalized to Φ_{0}/2πξ_{S}. The pair potential Δ in (2)–(5) is normalized to πk_{B}T_{c}, and the coordinates r, z are normalized to ξ_{S}. The physical meaning of ξ_{N} is discussed at the end of the paper.
To write down the solution of the Maxwell equation, ∇ × ∇ × Q = κ^{−2}J, for the vector potential Q in the form of Eq. (4), we have assumed that the Ginzburg–Landau parameter \(\kappa = \lambda _{{\mathrm{S}} \bot }{\mathrm{/}}\xi _{\mathrm{S}} \gg 1\). This condition allows one to neglect the magnetic field produced by supercurrents in comparison with the externally applied field H. The external field is therefore considered constant inside a circular vortex cell provided that the reduced cell radius r_{S} = R_{S}/ξ_{S} is smaller than λ_{S⊥} = \({\mathrm{max}}(\lambda _{\mathrm{S}},\lambda _{\mathrm{S}}^2{\mathrm{/}}d_{\mathrm{S}})\), where λ_{S} is the London penetration depth in S.
Equations (2)–(5) should be supplemented by the boundary conditions^{13} at the S/N interface (z = 0):
where γ_{B} and γ are the suppression parameters
Here, R_{SN}, and, \({\cal A}_{{\mathrm{SN}}}\), are, respectively, the resistance and the area of the S/N interface, ρ_{S(N)}, are the normal state resistivities of S(N) metals. At the bottom S/Vacuum interface and at the top N/Vacuum interface the boundary conditions has the form:
In addition, at the vortex unit cell border, r = r_{S}, and in its center, r = 0, we have, respectively:
The boundary value problem (2)–(11) has been solved numerically. Modified Newton method was evaluated to resolve nonlinearity of the differential problem (2)–(10). To improve the convergency of Newton method we applied a simple dumping^{44}. This continuous Newton procedure brings us to a set of linear differential problems which are solved by applying a special form of the Finite Element Method (FEM), the socalled mixed FEM^{45}, which solves simultaneously for both, complex angles θ_{S}, θ_{N}, and their gradients. Importantly, the developed FEM form enables to solve problems with discontinuous solutions which may arise from nonstandard interface conditions (6), describing a discontinuity of anomalous Green’s functions at the S/N interface. We implemented the whole Newton method—FEM procedure in the framework of finite element package FreeFEM++ (http://www.freefem.org/ff++)^{46}.
The complete numerical procedure consists of two stages. It starts with solving the boundary value problem (2)–(11) and with the determination of the spatial dependence of the pair potential Δ(r). At the second stage, we perform the analytical continuation in the Eqs. (2)–(10) by replacement ω → −iε, and for the already known Δ(r) dependence, in order to calculate the dependence of the density of states N(r, z, ε) = Re{cosθ_{N}} on energy ε at an arbitrary position r, z.
Results of numerical calculations
Using the numerical method described above, we have calculated the spatial evolution of the LDOS near the vortex core in the Nb/Cubilayer. The results of the calculations are presented in Fig. 3. Figure 3a–c presents the (r, z)spatial evolution of ZBDOS for three different values of the magnetic field, corresponding to the experimental data presented in Figs. 1 and 2. The validity of this result is confirmed by an excellent agreement between the calculated LDOS profiles in Fig. 3d–f and the experimental ones in Fig. 2b, d, both corresponding to z = 50 nm, i.e. to the LDOS at the surface of Cufilm. Figure 3g–i shows some of the calculated tunneling conductance spectra at the surface of the Cu film in between vortices (red lines), and their comparison with the experimental STS data (dots), also demonstrating a nice agreement. Importantly, in these calculations the resistivity ρ_{Cu} and the Nb/Cuinterface resistivity R_{SN}A_{SN} were taken as the only fitting parameters. Once adjusted, they were fixed to calculate the excitation spectra for all positions, fields and temperatures.
The results presented in Fig. 3 were all obtained taking ρ_{Cu} = 3.7 μΩ cm and R_{SN}A_{SN} = 1.5 × 10^{−11} Ω cm^{2}, both values being typical for in situ fabricated Nb/Cu structures^{47}. All other parameters of the model were calculated on the basis of these two fitting parameters and wellestablished relations. The mean free path in the Cufilm, l_{Cu} = 18 nm, was determined using the wellknown empiric relation (l_{Cu}ρ_{Cu})^{−1} = 1.54 × 10^{11} Ω^{−1} cm^{−2}^{48}. This l_{Cu} value corresponds well to the grain size of our Cufilm estimated from STM images (Supplementary Fig. 3a). The parameter ξ_{N} in Cu, ξ_{Cu} = 37 nm, was calculated using \(D_{{\mathrm{Cu}}} = l_{{\mathrm{Cu}}}v_F^{{\mathrm{Cu}}}{\mathrm{/}}3\), \(v_{\mathrm{F}}^{{\mathrm{Cu}}}\) = 1.57 × 10^{6} m/s. The critical temperature of the bilayer, T_{c} = 8.1 K, was extracted from the transport experiment (see Methods, subsection Sample preparation and characterization, and Supplementary Fig. 2a). That fixes, in turn, the proximity parameters, γ = 0.53 and γ_{B} = 1.1. The coherence length in Nb, ξ_{Nb} = 9 nm, was taken from^{49}.
Discussion
We now turn to the problem of the induced quantum coherence in N. The parameter ξ_{N} we used in Usadel equations is, by a numerical factor \(\sqrt {2\pi {\mathrm{/}}1.76} \simeq 1.89\), the socalled normal coherence length \(\sqrt {\hbar D_{\mathrm{N}}{ {/\Delta }}_0}\), which is often associated in literature with the quantum coherence length in N (Δ_{0} = 1.76k_{B}T_{c} is zerotemperature gap in S). On the microscopic level however, the proximity phenomena in N are described by Andreev quasiparticles: pairs of coherent electrons and retroscattered holes which are converted into/from Cooper pairs at the S/N interface (see^{15}). The important point here is that if the energy of an Andreev electron with respect to the Fermi energy is E (usually, E ≤ Δ) the hole has the energy −E. Quasiclassically, such electron–hole pair dephases in time; a typical dephasing time is t ~ ħ/E. In a diffusive metal, this time is associated with a distance \(L_{ {E}} = \sqrt {D_{\mathrm{N}}t} \approx \sqrt {\hbar D_{\mathrm{N}}{\mathrm{/}}E}\). It is immediately clear that for an Andreev quasiparticle of an energy E = Δ the characteristic dephasing coherence length is indeed L_{ E } = 1.89ξ_{N}. However, other Andreev quasiparticles, having energies lower than Δ, remain coherent over longer distances, L_{ E } > ξ_{N}. Theoretically, the coherence length could even be infinite, as L_{ E } → ∞ for E → 0. In real systems, thermal excitations ~k_{B}T and the Thouless energy \(E_{{\mathrm{Th}}} = \hbar D_{\mathrm{N}}{\mathrm{/}}d_{\mathrm{N}}^2\), related to the physical size of Nsubsystem, limit the spatial extent of coherent Andreev quasiparticles in N. At low temperatures of our STS experiment, the characteristic energy is the minigap, δ > k_{B}T, and the effective coherence length in N should be \(L_\delta = \sqrt {\hbar D_{\mathrm{N}}{\mathrm{/}}\delta }\). Putting the value for δ obtained both experimentally and theoretically, we get L_{ δ } ≈ 112 nm, i.e., L_{ δ } ≠ ξ_{N}^{15}.
The parameter ξ_{N} rather defines a region near S/N interface where the DOS strongly evolves from a BCSlike to the minigap. Far enough from this transition region, the proximity DOS should not evolve strongly^{15}. Indeed, by analyzing theoretical evolution of the vortex core inside N (follow, for instance, the color plot in Fig. 3a) it becomes clear that after a jump at S/N interface, and a rapid evolution in N over 30–50 nm, the vortex core size indeed tends to a saturation at the surface. Therefore, the lateral size of the proximity vortex core measured at the surface by STS should give a good estimate for the effective coherence length in N.
The measured ZBC vortex core profiles are presented as color circles in Fig. 4a. Solid lines are the fits using the approach developed to fit the vortex cores in superconductors in high magnetic fields^{50}. The fits are obtained with ξ_{eff} = 109 nm. Dashed lines are fits using the phenomenological formula for vortices in superconductors suggested in^{51}, σ_{ H }(r) = 1 − (1 − σ_{0}) tanh(r/ξ_{eff}), in which σ_{0} is the normalized ZBC measured far from the core, and ξ_{eff} is the effective coherence length. This empiric formula is commonly used in the STM/STS community to extract the superconducting coherence length from the vortex core profile. The best fit is obtained with ξ_{eff} = 105 nm, i.e., indeed ξ_{eff} ≈ L_{ δ } > ξ_{N}. In Fig. 4b we show several vortex core profiles (zerobias conductance) calculated for different Nthicknesses and compare them to fits by the above formula for σ_{ H }(r). One can see that the formula works well for the S system alone and qualitatively reproduces the overall dependence for S/N bilayers. By evaluating ξ_{eff} and δ for samples with different Cuthickness we found a nearly linear \(\xi _{{\mathrm{eff}}}^2(1/\delta )_{}^{}\) dependence, Fig. 4c, as expected for L_{ δ }(δ). Therefore, the proximity vortex have indeed a characteristic lateral extension ξ_{eff} ≈ L_{ δ }. A simplified picture here is that at distances >ξ_{N} from S/N interface, the proximity vortex cores look like the cores of Abrikosov vortices in superconductors. Consequently, the Nelectrode of a finite thickness \(d_{\mathrm{N}} < \sqrt {\hbar D_{\mathrm{N}}{\mathrm{/}}k_{\mathrm{B}}T}\) can be thought as a genuine superconductor with δ and L_{ δ } playing respective roles of the effective superconducting gap and coherence length.
The round shape and welldefined size ~ 2L_{ δ } of the observed proximity vortex cores make them substantially different from the Josephson vortices predicted in^{39} and recently observed in Nparts of lateral SNS junctions^{22}. In these works, the Josephson vortex cores were found distorted. Their width is fixed by the width of the Npart of the SNS junction, whereas their length along S/N interface varies with the applied magnetic field. The length is defined by a typical distance over which the quantum phase along each S/N interface accumulates a πshift. In rising magnetic field, the phase gradients along S/N interfaces increase, and the length of the Josephson proximity vortex cores decreases. The minimum length of thermodynamically stable Josephson vortex cores is limited by critical currents at Sedges to ~ξ_{S}. Up to now both kinds of vortices were observed only in the diffusive regime. Extending experimental studies to the ballistic limit^{52} is a challenging task for the future.
The variation of L_{ δ } and δ with the Nlayer thickness, as well as the high precision of the Usadel approach enable engineering S/N bilayers with desired properties (see also Methods, subsection Numerical calculations). The critical temperature, currents and fields can be tuned, providing a route for new functionalities^{11}. The minigap filling with quasiparticle excitations due to circulating currents can also be optimized—an important point for engineering superconducting qubits, in studies of Majorana states, Shiba bands, topological superconductivity. Precisely, we found that the density of quasiparticle excitations inside the minigap strongly depends on magnetic field (via orbital effect) and on Nlayer thickness. Figure 5a presents ZBDOS vortex profiles at 1.3 and 5 mT in the 50 nm Cuthick sample. At 1.3 mT (R_{ S } = 400 nm), the minigap continues to exist at the vortex lattice unit cell boundary, as ZBDOS is zero there. However, already at 5 mT (R_{S} = 220 nm) the minigap transforms to a pseudominigap, ZBDOS > 0. In Fig. 5b the LDOS at the unitcell boundary (r = R_{S}) is plotted as a function of energy, for the same fields. It is immediately clear that when the the radius R_{ S } of the vortex unit cell becomes comparable or smaller than L_{ δ }, the minigap fills with quasiparticle excitations (even between vortices). The phenomenon takes place first at the minigap edges and extends to all ingap states, Fig. 5b. In Fig. 4b we plot radial ZBDOS profiles for samples of different Cuthickness. They demonstrate that as Cuthickness is increased and the zerofield minigap becomes smaller and smaller, the density of ingap quasiparticle excitations rapidly increases, thus transforming the hard minigap in a sort of a pseudominigap. This demonstrates the fragility of the minigap with respect to circulating currents, and puts constraints for applications.
In conclusion, we experimentally and theoretically demonstrated the existence of a welldefined core of quantum vortex induced from a superconductor (Nb) into a diffusive normal metal (Cu). By mapping the spatial variations of the proximity minigap in the local tunneling spectra, we measured the core size, and followed the evolution of the cores with temperature and magnetic field. We complemented our observations by a selfconsistent model based on quasiclassical Usadel approach. We developed a numerical method that allowed us to calculate with high precision the quasiparticle excitation spectra near the vortex cores at realistic conditions of the scanning tunneling spectroscopy experiment, and to discover characteristic spatial and energy scales which are in play inside S/N bilayers. Our results extend the microscopic knowledge about quantum vortex, and enable extracting relevant physical properties of the buried S/N interface that control the proximity phenomena.
Methods
Proximity phenomena in the diffusive limit
To describe proximity effect in diffusive superconducting and normal materials, the most complete theoretical framework is provided by the quasiclassical theory of superconductivity based on Usadel equations^{16,18,19,27,53}. A general hallmark found for a SN bilayer is that the superconducting correlations induced in N probed at energy E remain coherent over a length \(L_{ {E}} = \sqrt {\hbar D_{\mathrm{N}}{\mathrm{/}}E}\), D_{N} being the diffusion coefficient in N. This makes naturally appear the coherence length ξ_{N} in N associated with the superconducting energy gap Δ in S, \(\xi _{\mathrm{N}} = \sqrt {\hbar D_{\mathrm{N}}{\mathrm{/\Delta }}}\)^{16,17,18}. However an important difference should be made when the thickness d_{N} of the N part is finite or infinite. When the thickness is finite a characteristic true energy gap appears commonly referred to as minigap, which is directly linked directly to the Thouless energy of the N part \(E_{{\mathrm{Th}}} = \hbar D_{\mathrm{N}}{\mathrm{/}}d_{\mathrm{N}}^2\) in the long junction limit \(d_{\mathrm{N}} \gg \xi _{\mathrm{N}}\). On the other hand, for infinite thickness there is no more any energy gap and for any energy E the superconducting correlations in N decay over L_{ E } provided that L_{ E } < L_{ Φ }, L_{ Φ } being the electronic phase coherence length of N (ref. ^{54}, where Eq. (28) explicitly shows \(\sqrt E\) dependence of DOS for the case of infinite thickness of Nlayer).
Local spectral signatures of the proximity effect were experimentally probed by tunneling for SN junctions with an infinite N system^{21,55}, and a finite N system^{56,57} and have thoroughly confirmed the theoretical predictions of the quasiclassical theory. Other important geometries such as Josephson SNS junctions have also been addressed theoretically^{13,39,58,59,60,61}. Recent experimental studies of SNS junctions^{20,22} further confirmed the robustness of the Usadel theory in the diffusive limit.
Sample preparation and characterization
The Cu/Nbbilayers were elaborated using the twostep inverted growth/cleavage method, initially suggested by Karapetrov et al.^{62,63} and Stolyarov et al.^{33}. The method enables the preparation, under ultrahigh vacuum, of a large variety of complex hybrid systems with clean exposed surfaces. The latter condition is mandatory for reliable scanning tunneling spectroscopy measurements with high spatial and energy resolution.
The Nb/Cu bilayers were first grown at a base pressure of 5 × 10^{−7} mbar by magnetron sputtering onto a SiO_{2}(270 nm)/Si(0.3 mm) wafer kept at room temperature. First, a 50 nm thick film of Cu was deposited on SiO_{2}, followed by the deposition of 100 nm of Nb. The SiO_{2} layer is essential to avoid a chemical bonding between Cu and Si, thus preventing a strong mechanical adhesion of the Culayer to the substrate (Supplementary Fig. 1a).
Macroscopic superconducting properties of Cu/Nbbilayers were measured in 4probe low temperature transport experiments. A sharp transition to a superconducting state was detected at T_{c} = 8.1 K, as demonstrated in Supplementary Fig. 2a.
Scanning tunneling spectroscopy experiments
At the second stage, the samples were glued in air using a UHVcompatible conductive epoxy (Epotek H27D (http://www.epotek.com)), Supplementary Fig. 1. The Nbside of the sample was glued onto the stainless steel STM sample holder; a cleaver was glued onto the opposite (Si) face of the sandwich (see Supplementary Fig. 1b–d). The sandwiches prepared in this way were introduced into the UHV STM chamber (base pressure of 3 × 10^{−11} mbar). By softly pushing on the cleaver with the help of a manipulator (Supplementary Fig. 1e, f), the Nb/Cu/SiO_{2}/Si multilayer structure breaks at the Cu/SiO_{2} interface, the weakest part of the sandwich. The obtained sample, a Cu/Nbbilayer with Cu as top layer (Supplementary Fig. 1a), was then put into UHVSTM head (Supplementary Fig. 1g). Insitu STM/STS experiments were carried out in the temperature range 0.3–5 K^{64}; mechanically etched Pt(80%)/Ir(20%) tips were used. Topographic STM images were obtained in a constantcurrent mode; STS was realized by acquiring local I(V)(x, y) characteristics and numerically differentiating them to obtain the tunneling conductance dI/dV(V)(x, y) maps.
Numerical calculations
The details of the numerical method developed within the Usadel model are presented in the Main Text. As a validity check, the method was applied to reproduce the experimentally measured temperature dependence of the tunneling proximity spectra (Supplementary Fig. 2b–f). The temperature evolution of the ZeroBias Conductance and their fits by Usadel model are presented in Supplementary Fig. 2b. The temperature dependence of the tunneling spectra and their fits are presented in Supplementary Fig. 2c, d. The method gives a detailed agreement with the experimental data, Supplementary Fig. 2e, f. Remarkably, all the fits are generated with the same set of parameters (see the discussion in the Main Text).
Supplementary Figure 3c represents the calculated tunneling DOS of Nb (yellow line) along with the calculated proximity DOS at Cusurface for various thickness of Culayer (15 nm, 30 nm, 50 nm, 100 nm, 150 nm, 200 nm). As the thickness of Nlayer increases, the proximity minigap δ decreases. The calculated DOS at the Cusurface for different Cufilm thicknesses enables estimating the proximity minigap.
The developed numerical method enables predicting the evolution of the DOS in the vicinity of the vortex singularity. Supplementary Figure 3b demonstrates the calculated evolution of the vortex core inside the Nlayer for different Culayer thicknesses at a magnetic field of 5 mT. For small thicknesses the vortex core mimics the core of the Abrikosov vortex in Nb. As the thickness increases, the vortex core rapidly expands in the proximity region. Also important, the jump in the core size at the S/N interface strongly depends on Nlayer thickness. Remarkably, the depthdynamics of the vortex core expansion is slower near the surface, as it is clear for all thicknesses up to 100 nm. These calculations demonstrate the crucial importance of the finite thickness of Culayer for the vortex core shape and expansion.
For thicker Nlayers (150 nm, 200 nm) the vortex cores rapidly expand to the limit of the vortex unit cell. The situation corresponds to the overlap of the proximity vortex cores which occurs even at low fields of a few mT. This shows how the superconducting correlations are affected by magnetic fields and supercurrents; it enables one to tune the magnetic field response of S/Nbilayers.
Supplementary Figure 3d presents the comparison between the vortex core profiles calculated in the framework of Usadel approach and the fits using the approximate formula suggested in^{51} (see also in the Main text). The fits enable to extract the effective coherence length ξ_{eff} in the normal layer for different thicknesses of Cufilm.
Data availability
Authors can confirm that all relevant data are included in the paper and its Supplementary Information files. Additional data are available on request from the authors.
References
 1.
de Gennes, P. G. Superconductivity in Metals and Alloys. (W.A. Benjamin, NY, 1966).
 2.
McMillan, W. L. Tunneling model of the superconducting proximity effect. Phys. Rev. 175, 537 (1968).
 3.
Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect (John Wiley and Sons Inc., 1982).
 4.
Mukhanov, O. A. Digital Processing, Superconductor Digital Electronics. In Applied Superconductivity: Handbook on Devices and Applications (ed. Seidel, P.) (WileyVCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015).
 5.
Soloviev, I. I. et al. Beyond Moore’s technologies: operation principles of a superconductor alternative. Beilstein J. Nanotechnol. 8, 2689–2710 (2017).
 6.
Cleuziou, J.P. et al. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 1, 53–59 (2006).
 7.
Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting quantum interference proximity transistor. Nat. Phys. 6, 254–259 (2010).
 8.
Bannykh, A. A. et al. Josephson tunnel junctions with a strong ferromagnetic interlayer. Phys. Rev. B 79, 054501 (2009).
 9.
Larkin, T. I. et al. Ferromagnetic Josephson switching device with high characteristic voltage. Appl. Phys. Lett. 100, 222601 (2012).
 10.
Skryabina, O. V. et al. Josephson coupling across a long singlecrystalline Cu nanowire. Appl. Phys. Lett. 110, 222605 (2017).
 11.
Blois, A., Rozhko, S., Hao, L., Gallop, J. C. & Romans, E. J. Proximity effect bilayer nano superconducting quantum interference devices for millikelvin magnetometry. J. Appl. Phys. 114, 233907 (2013).
 12.
Larsen, T. W. et al. Semiconductornanowirebased superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).
 13.
Kuprianov, M. Yu & Lukichev, V. F. Influence of boundary transparency on the critical current of “dirty” SS’S structures. Zh. Eksp. Teor. Fiz. 94, 139–149 (1988)., Sov. Phys. JETP 67, 1163–1168 (1988).
 14.
Pannetier, B. & Courtois, H. Andreev reflection and proximity effect. J. Low. Temp. Phys. 118, 599–615 (2000).
 15.
Cuevas, J. C., Roditchev, D., Cren, T. & Brun, C. The Oxford Handbook of Small Superconductors. Chapter 4. (Oxford Univ. Press, Oxford, 2016).
 16.
Golubov, A. A. & Kupriyanov, M. Yu. Theoretical investigation of Josephson tunnel junctions with spatially inhomogeneous superconducting electrodes. J. Low. Temp. Phys. 70, 83–130 (1988).
 17.
Golubov, A. A. & Kupriyanov, M. Yu. Josephson effect in SNlNS and SNIS tunnel structures with finite transparency of the SN boundaries. Zh. Eksp. Teor. Fiz. 96, 1420–1433 (1989)., Sov. Phys. JETP 69, 805–812 (1989).
 18.
Belzig, W., Bruder, C. & Schon, G. Local density of states in a dirty normal metal connected to a superconductor. Phys. Rev. B 54, 9443–9448 (1996).
 19.
Belzig, W. et al. Quasiclassical Green’s function approach to mesoscopic superconductivity. Superlattices Microstruct. 25, 1251–1288 (1999).
 20.
le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100, 197002 (2008).
 21.
Gueron, S. et al. Superconducting proximity effect probed on a mesoscopic length scale. Phys. Rev. Lett. 77, 3025 (1996).
 22.
Roditchev, D. et al. Direct observation of Josephson vortex cores. Nat. Phys. 11, 332 (2015).
 23.
Nishizaki, T., Troyanovski, A. M., van Baarle, G. J. C., Kes, P. H. & Aarts, J. STM imaging of vortex structures in NbN thin films. Physica C. 388389, 777–778 (2003).
 24.
Golubov, A. A. & Hartmann, U. Electronic structure of the Abrikosov vortex core in arbitrary magnetic fields. Phys. Rev. Lett. 72, 6302 (1994).
 25.
Golubov, A. A. Abrikosov vortex core structure in a proximityeffect multilayer. Czech. J. Phys. 46, 569–570 (1996).
 26.
Kopnin, N. B., Khaymovich, I. M. & Mel’nikov, A. S. Vortex matter in lowdimentional systems with proximityinduced superconductivity. J. Exp. Theor. Phys. 144, 486–507 (2013).
 27.
Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507 (1970).
 28.
Kupriyanov, M. Yu. et al. Doublebarrier Josephson structures as the novel elements for superconducting largescale integrated circuits. Phys C. 326–327, 16–45 (1999).
 29.
Jabdaraghi, R. N., Peltonen, J. T., Saira, O.P. & Pekola, J. P. Lowtemperature characterization of NbCuNb weak links with Ar ioncleaned interfaces. Appl. Phys. Lett. 108, 042604 (2016).
 30.
Krasnov, V. M., Pedersen, N. F., Oboznov, V. A. & Ryazanov, V. V. Josephson properties of Nb/Cu multilayers. Phys. Rev. B 49, 12969–12974 (1994).
 31.
Dubos, P., Courtois, H., Buisson, O. & Pannetier, B. Coherent lowenergy charge transport in a diffusive SNS junction. Phys. Rev. Lett. 87, 20 (2001).
 32.
Kushnir, V. N., Prischepa, S. L., Cirillo, C. & Attanasio, C. Proximity effect and interface transparency in Nb/Cu multilayers. J. Appl. Phys. 106, 113917 (2009).
 33.
Stolyarov, V. S. et al. Ex situ elaborated proximity mesoscopic structures for ultrahigh vacuum scanning tunneling spectroscopy. Appl. Phys. Lett. 104, 172604 (2014).
 34.
Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanningtunnelingmicroscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214 (1989).
 35.
Hess, H. F., Robinson, R. B. & Waszczak, J. V. Vortexcore structure observed with a scanning tunneling microscope. Phys. Rev. Lett. 64, 2711 (1990).
 36.
Hess, H. F. Scanning tunneling spectroscopy of vortices in a superconductor. Physica C 259, 185–189 (1991).
 37.
Suderow, H., Guillamon, I., Rodrigo, J. G. & Vieira, S. Imaging superconducting vortex core and lattices with a scanning tunneling microscope. Superc. Sci. Technol. 27, 063001 (2014).
 38.
Cren, T., SerrierGarcia, L., Debontridder, F. & Roditchev, D. Vortex fusion and giant vortex states in confined superconducting condensates. Phys. Rev. Lett. 107, 097202 (2011).
 39.
Cuevas, J. C. & Bergeret, F. S. Magnetic interference patterns and vortices in diffusive SNS junctions. Phys. Rev. Lett. 99, 217002 (2007).
 40.
Bergeret, F. S. & Cuevas, J. C. The vortex state and josephson critical current of a diffusive SNS junction. J. Low. Temp. Phys. 153, 304 (2008).
 41.
Amundsen, M. & Linder, J. General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanoisland geometries. Sci. Rep. 6, 22765 (2016).
 42.
Ihle, D. WignerSeitz approximation for the description of the mixed state of type II superconductors. Phys. Stat. Sol. B 47, 423–428 (1971).
 43.
WattsTobin, R. J., Kramer, L. & Pesch, W. Local structure and thermodynamic behavior of dirty superconductors in the mixed state at arbitrary temperature. J. Low. Temp. Phys. 17, 71 (1974).
 44.
Ermakov, V. V. & Kalitkin, N. N. The optimal step and regularization for Newton’s method. USSR Comput. Mat. Mat. Phys. 21, 235–242 (1981).
 45.
Boffi, D., Brezzi, F. & Fortin, M. Mixed finite element methods and applications (Springer Series in Computational Mathematics, 2013).
 46.
Hecht, F. New development in freefem++. J. Numer. Math. 20, 251 (2012).
 47.
Park, W. et al. Measurement of resistance and spinmemory loss (spin relaxation) at interfaces using sputtered current perpendiculartoplane exchangebiased spin valves. Phys. Rev. B 62, 1178 (2000).
 48.
Chambers, R. G. The anomalous spin effect. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 215, 481–497 (1952).
 49.
Krasnov, V. M., Kovalev, A. E., Oboznov, V. A. & Ryazanov, V. V. Anisotropy of the lower critical field in a Nb/Cu multilayer the evidence for 3D2D crossover. Physica C. 215, 265–268 (1993).
 50.
Fente, A. et al. Field dependence of the vortex core size probed by scanning tunneling microscopy. Phys. Rev. B 94, 014517 (2016).
 51.
Eskildsen, M. R. et al. Vortex imaging in the band of magnesium diboride. Phys. Rev. Lett. 89, 187003 (2002).
 52.
Ostroukh, V. P., Baxevanis, B., Akhmerov, A. R. & Beenaker, C. W. J. Twodimensional Josephson vortex lattice and anomalously slow decay of the Fraunhofer oscillations in a ballistic SNS junction with a warped Fermi surface. Phys. Rev. B 94, 094514 (2016).
 53.
Rammer, J. & Smith, H. Quantum fieldtheoretical methods in transport theory of metals. Rev. Mod. Phys. 58, 323 (1986).
 54.
Golubov, A. A. & Kupriyanov, M. Yu. Quasiparticle current in ballistic NcN’S junctions. Phys C. 259, 27 (1996).
 55.
SerrierGarcia, L. et al. Scanning tunneling spectroscopy study of the proximity effect in a disordered twodimensional metal. Phys. Rev. Lett. 110, 157003 (2013).
 56.
Vinet, M., Chapelier, C. & Lefloch, F. Spatially resolved spectroscopy on superconducting proximity nanostructures. Phys. Rev. B 63, 165420 (2001).
 57.
Moussy, N., Courtois, H. & Pannetier, B. Local spectroscopy of a proximity superconductor at very low temperature. Europhys. Lett. 55, 861 (2001).
 58.
Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101 (1979).
 59.
Kupriyanov, M. Yu. & Lukichev, V. F. Influence of the proximity effect in the electrodes on the stationary properties of SNS Josephson structures. Sov. J. Low. Temp. Phys. 8, 526 (1982).
 60.
Zaikin, A. D. & Zharkov, G. F. Effect of external fields and impurities on the Josephson current in SNINS junctions. Sov. Phys. JETP 54, 944 (1981).
 61.
Zhou, F., Charlat, P., Spivak, B. & Pannetier, B. Density of States in SuperconductorNormal MetalSuperconductor Junctions. J. Low. Temp. Phys. 110, 841–850 (1998).
 62.
Karapetrov, G., Fedor, J., Iavarone, M., Rosenmann, D. & Kwok, W.K. Direct observation of geometrical phase transitions in mesoscopic superconductors by scanning tunneling microscopy. Phys. Rev. Lett. 95, 167002 (2005).
 63.
Karapetrov, G., Fedor, J., Iavarone, M., Marshall, M. T. & Divan, R. Imaging of vortex states in mesoscopic superconductors. Appl. Phys. Lett. 87, 162515 (2005).
 64.
Cren, T., Fokin, D., Debontridder, F., Dubost, V. & Roditchev, D. Ultimate Vortex Confinement Studied by Scanning Tunneling Spectroscopy. Phys. Rev. Lett. 102, 127005 (2009).
Acknowledgements
We thank V. Ryazanov, V. Gurtovoy, F. Debontridder for fruitful discussions and advice. This work was supported by the French National Agency for Research ANR via grants MISTRAL and SUPERSTRIPES, and by the grant of the Ministry of Education and Science of the Russian Federation, Grant No. 14.Y26.31.0007. V.S.S. acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS (No.K32017042). M.Y.K. acknowledges the partial support by the Program of Competitive Growth of Kazan Federal University. D.R., V.S.S., and D.I.K. acknowledge the partial financial support within the framework of the state competitiveness enhancement program of improving the prestige of leading Russian universities among world leading research and education centers. Theoretical formulation of the problem, the development of numerical algorithms and numerical calculations were carried out with the support of the Russian Science Foundation (project no 121701079). A.A.G. and D.R. acknowledge the COST project “Nanoscale coherent hybrid devices for superconducting quantum technologies”—Action CA16218. V.S.S. acknowledges the partial financial support RFBR 160200815, 160200727.
Author information
Affiliations
Contributions
V.S.S., T.C., and D.R. conceived the project and supervised the experiments; V.S.S., T.C., C.B., and O.V.S. performed the sample and surface preparation for STM experiments; V.S.S., M.Y.K., A.A.G., M.M.K. and D.I.K. performed the theoretical calculations. V.S.S., I.A.G. A.A.G., M.Y.K., and D.R. wrote the manuscript with contributions from the other authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Stolyarov, V.S., Cren, T., Brun, C. et al. Expansion of a superconducting vortex core into a diffusive metal. Nat Commun 9, 2277 (2018). https://doi.org/10.1038/s41467018045821
Received:
Accepted:
Published:
Further reading

Environmentinduced overheating phenomena in Aunanowire based Josephson junctions
Scientific Reports (2021)

Local Josephson vortex generation and manipulation with a Magnetic Force Microscope
Nature Communications (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.