The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 X^2 X^2 X^2 X^2 1 X^2
0 X 0 0 0 0 0 0 0 X X^2+X X X^2 X^2 X X X^2 0 X^2+X X X X X 0 X^2+X X 0 X X^2 0 X X^2 X^2 X^2 0 X^2 X^2+X 0
0 0 X 0 0 0 X X^2+X X X X 0 0 X X X^2 X^2 X^2+X X^2+X X^2 X X^2 X^2+X X^2 0 0 0 X X^2+X X^2+X X X X X X 0 X^2 X^2
0 0 0 X 0 X X X X^2 0 0 X^2 X^2 X^2 X^2+X X X^2+X X^2+X 0 X^2 X^2+X X X X X^2+X X^2+X X^2 0 X 0 X^2+X X X X^2+X X X^2 X^2 0
0 0 0 0 X X X^2 X^2+X X^2+X 0 X X 0 X^2+X X X^2 X^2+X X X^2+X X^2 X^2 0 X 0 X^2+X X X 0 0 X^2 X^2 X^2 0 X^2 X^2 X^2 X 0
0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 0 0 X^2 0 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0
generates a code of length 38 over Z2[X]/(X^3) who´s minimum homogenous weight is 32.
Homogenous weight enumerator: w(x)=1x^0+380x^32+384x^34+778x^36+896x^38+1068x^40+256x^42+276x^44+54x^48+2x^52+1x^64
The gray image is a linear code over GF(2) with n=152, k=12 and d=64.
This code was found by Heurico 1.16 in 87.4 seconds.